CEAI: CCM based Email Authorship Identification Model
نویسندگان
چکیده
In this paper we present a model for email authorship identification (EAI) by employing a Cluster-based Classification (CCM) technique. Traditionally, stylometric features have been successfully employed in various authorship analysis tasks; we extend the traditional feature-set to include some more interesting and effective features for email authorship identification (e.g. the last punctuation mark used in an email, the tendency of an author to use capitalization at the start of an email, or the punctuation after a greeting or farewell). We also included Info Gain feature selection based content features. It is observed that the use of such features in the authorship identification process has a positive impact on the accuracy of the authorship identification task. We performed experiments to justify our arguments and compared the results with other base line models. Experimental results reveal that the proposed CCM -based email authorship identification model, along with the proposed feature set, outperforms the state-of-the-art support vector machine (SVM)-based models, as well as the models proposed by Iqbal et al. [1, 2]. The proposed model attains an accuracy rate of 94% for 10 authors, 89% for 25 authors, and 81% for 50 authors, respectively on Enron dataset, while 89.5% accuracy has been achieved on authors' constructed real email dataset. The results on Enron dataset have been achieved on quite a large number of authors as compared to the models proposed by Iqbal et al. [1, 2].
منابع مشابه
Authorship Identification in Large Email Collections: Experiments Using Features that Belong to Different Linguistic Levels - Notebook for PAN at CLEF 2011
The aim of this paper is to explore the usefulness of using features from different linguistic levels to email authorship identification. Using various email datasets provided by PAN’11 lab we tested several feature groups in both authorship attribution and authorship verification subtasks. The selected feature groups combined with Regularized Logistic Regression and One-Class SVMmachine learni...
متن کاملDetection of Fraudulent Emails by Authorship Extraction
Fraudulent emails can be detected by extraction of authorship information from the contents of emails. This paper presents information extraction based on unique words from the emails. These unique words will be used as representative features to train Radial Basis function (RBF). Final weights are obtained and subsequently used for testing. The percentage of identification of email authorship ...
متن کاملMining Online Diaries for Blogger Identification
In this paper, we present an investigation of authorship identification on personal blogs or diaries, which are different from other types of text such as essays, emails, or articles based on the text properties. The investigation utilizes couple of intuitive feature sets and studies various parameters that affect the identification performance. Many studies manipulated the problem of authorshi...
متن کاملApplying Authorship Analysis to Arabic Web Content
The advent and rapid proliferation of internet communication has allowed the realization of numerous security issues. The anonymous nature of online mediums such as email, web sites, and forums provides an attractive communication method for criminal activity. Increased globalization and the boundless nature of the internet have further amplified these concerns due to the addition of a multilin...
متن کاملComparative study of Authorship Identification Techniques for Cyber Forensics Analysis
Authorship Identification techniques are used to identify the most appropriate author from group of potential suspects of online messages and find evidences to support the conclusion. Cybercriminals make misuse of online communication for sending blackmail or a spam email and then attempt to hide their true identities to void detection.Authorship Identification of online messages is the contemp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1312.2451 شماره
صفحات -
تاریخ انتشار 2013